Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new near-linear time algorithm for k-nearest neighbor search using a compressed cover tree

Authors: Elkin, Yury; Kurlin, Vitaliy;

A new near-linear time algorithm for k-nearest neighbor search using a compressed cover tree

Abstract

Given a reference set $R$ of $n$ points and a query set $Q$ of $m$ points in a metric space, this paper studies an important problem of finding $k$-nearest neighbors of every point $q \in Q$ in the set $R$ in a near-linear time. In the paper at ICML 2006, Beygelzimer, Kakade, and Langford introduced a cover tree on $R$ and attempted to prove that this tree can be built in $O(n\log n)$ time while the nearest neighbor search can be done in $O(n\log m)$ time with a hidden dimensionality factor. This paper fills a substantial gap in the past proofs of time complexity by defining a simpler compressed cover tree on the reference set $R$. The first new algorithm constructs a compressed cover tree in $O(n \log n)$ time. The second new algorithm finds all $k$-nearest neighbors of all points from $Q$ using a compressed cover tree in time $O(m(k+\log n)\log k)$ with a hidden dimensionality factor depending on point distributions of the given sets $R,Q$ but not on their sizes.

Accepted to ICML 2023

Related Organizations
Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green