
With industrial development and changes in human lifestyle, organic pollution has become an increasingly serious problem, posing a serious threat to the ecological environment and human health. As an emerging advanced oxidation process, titanium dioxide–based photocatalysis has shown unparalleled potential in solving environmental pollution problems due to its stable catalyst properties, mild reaction conditions, environmental friendliness and low cost. However, titanium dioxide is limited in its photocatalytic efficiency by the fact that it can only be excited by ultraviolet light, its carriers are easily compounded and its adsorption capacity is weak. In order to improve the photocatalytic degradation efficiency of organic pollutants, the properties of titanium dioxide can be enhanced by means of modification. This article mainly reviews several major modification methods and research progresses of semiconductor titanium dioxide materials for the degradation performance of organic pollutants in the environment, and focuses on the advantages of the new Metal Organic Frameworks/ titanium dioxide composite system in enhancing the degradation performance of organic pollutants. Finally, the application prospects and key issues of Metal Organic Frameworks/ titanium dioxide materials in photocatalytic treatment of organic pollution problems are presented.
органічні забруднювачі, degradation of organic pollutants, modification, композити, organic pollutants, titanium dioxide, титан (IV) оксид, модифікація, composites, photocatalysis, деградація органічних забруднювачів, фотокаталіз
органічні забруднювачі, degradation of organic pollutants, modification, композити, organic pollutants, titanium dioxide, титан (IV) оксид, модифікація, composites, photocatalysis, деградація органічних забруднювачів, фотокаталіз
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
