Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
WATER AND WATER PURIFICATION TECHNOLOGIES SCIENTIFIC AND TECHNICAL NEWS
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MODIFICATION METHODS TO ENHANCE THE PERFORMANCE OF TiO2 IN PHOTOCATALYSIS

Методи модифікації для підвищення ефективності TiO2 у фотокаталізі
Authors: Zhentao Zhou; Tetiana Dontsova;

MODIFICATION METHODS TO ENHANCE THE PERFORMANCE OF TiO2 IN PHOTOCATALYSIS

Abstract

With industrial development and changes in human lifestyle, organic pollution has become an increasingly serious problem, posing a serious threat to the ecological environment and human health. As an emerging advanced oxidation process, titanium dioxide–based photocatalysis has shown unparalleled potential in solving environmental pollution problems due to its stable catalyst properties, mild reaction conditions, environmental friendliness and low cost. However, titanium dioxide is limited in its photocatalytic efficiency by the fact that it can only be excited by ultraviolet light, its carriers are easily compounded and its adsorption capacity is weak. In order to improve the photocatalytic degradation efficiency of organic pollutants, the properties of titanium dioxide can be enhanced by means of modification. This article mainly reviews several major modification methods and research progresses of semiconductor titanium dioxide materials for the degradation performance of organic pollutants in the environment, and focuses on the advantages of the new Metal Organic Frameworks/ titanium dioxide composite system in enhancing the degradation performance of organic pollutants. Finally, the application prospects and key issues of Metal Organic Frameworks/ titanium dioxide materials in photocatalytic treatment of organic pollution problems are presented.

Country
Ukraine
Keywords

органічні забруднювачі, degradation of organic pollutants, modification, композити, organic pollutants, titanium dioxide, титан (IV) оксид, модифікація, composites, photocatalysis, деградація органічних забруднювачів, фотокаталіз

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold