
Recently, there has been substantial interest in the study of various random networks as mathematical models of complex systems. As these complex systems grow larger, the ability to generate progressively large random networks becomes all the more important. This motivates the need for efficient parallel algorithms for generating such networks. Naive parallelization of the sequential algorithms for generating random networks may not work due to the dependencies among the edges and the possibility of creating duplicate (parallel) edges. In this paper, we present MPI-based distributed memory parallel algorithms for generating random scale-free networks using the preferential-attachment model. Our algorithms scale very well to a large number of processors and provide almost linear speedups. The algorithms can generate scale-free networks with 50 billion edges in 123 seconds using 768 processors.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
