Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the I...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Intelligent fault prediction of rolling bearing based on gate recurrent unit and hybrid autoencoder

Authors: Changchang Che; Huawei Wang; Qiang Fu; Xiaomei Ni;

Intelligent fault prediction of rolling bearing based on gate recurrent unit and hybrid autoencoder

Abstract

Accurate fault prediction of rolling bearing can predict the operation condition in advance, which is an important means to ensure the safety and reliability of rotating machinery. Aimed at the data processing of rolling bearing vibration signal with multi-fault and long time series, an intelligent fault prediction model based on gate recurrent unit and hybrid autoencoder is proposed in this paper. Firstly, vibration signals of multi-faults are brought into multi-layer gate recurrent unit model for multi-step and multi-variable time series prediction. Secondly, variational autoencoder is used for data augmentation of fault samples. Thirdly, the augmented fault samples are brought into stacked denoising autoencoder for noise reduction and fault prediction. Finally, fault prediction results of rolling bearing can be achieved on the basis of gate recurrent unit and hybrid autoencoder of variational autoencoder and stacked denoising autoencoder. The bearing datasets of Case Western Reserve University are used to verify the effectiveness of the proposed method. Comparative experiment results show that the proposed fault prediction model has more accurate time series prediction result and higher fault prediction accuracy than other deep learning models. With 98.68% accuracy of fault prediction, the proposed fault prediction model can be taken as an effective tool for intelligent predictive maintenance of rolling bearing.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!