Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fast compressive beamforming with a modified fast iterative shrinkage-thresholding algorithm

Authors: Shuo Wang; Cheng Chi; Shenglong Jin; Peng Wang; Jiyuan Liu; Haining Huang;

Fast compressive beamforming with a modified fast iterative shrinkage-thresholding algorithm

Abstract

Compressive beamforming has been successfully applied to direction-of-arrival estimation with sensor arrays. The results demonstrated that this technique achieves superior performance when compared with traditional high-resolution beamforming methods. The existing compressive beamforming methods use classical iterative optimization algorithms in their compressive sensing theories. However, the computational complexity of the existing compressive beamforming methods tend to be excessively high, which has limited the use of compressive beamforming in applications with limited computing resources. To address this issue, this paper proposes a fast compressive beamforming method which combines the shift-invariance of the array beam patterns with a fast iterative shrinkage-thresholding algorithm. The evaluation shows that the proposed fast compressive beamforming method successfully reduces the number of floating-point operations by 3 orders of magnitude when compared with the existing methods. In addition, both the simulations and experiments demonstrate that the resolution limit for discerning closely spaced sources of the introduced fast method is comparable to those of the existing compressive beamforming methods, which use classical iterative optimization algorithms.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!