Downloads provided by UsageCounts
High-throughput sequencing (HTS) technologies have revolutionized the field of genomics, enabling rapid and cost-effective genome analysis for various applications. However, the increasing volume of genomic data generated by HTS technologies presents significant challenges for computational techniques to effectively analyze genomes. To address these challenges, several algorithm-architecture co-design works have been proposed, targeting different steps of the genome analysis pipeline. These works explore emerging technologies to provide fast, accurate, and low-power genome analysis. This paper provides a brief review of the recent advancements in accelerating genome analysis, covering the opportunities and challenges associated with the acceleration of the key steps of the genome analysis pipeline. Our analysis highlights the importance of integrating multiple steps of genome analysis using suitable architectures to unlock significant performance improvements and reduce data movement and energy consumption. We conclude by emphasizing the need for novel strategies and techniques to address the growing demands of genomic data generation and analysis.
In Proceedings of the 60th Design Automation Conference (DAC), Jul 2023
Genomics (q-bio.GN), FOS: Computer and information sciences, FOS: Biological sciences, Hardware Architecture (cs.AR), Quantitative Biology - Genomics, Computer Science - Hardware Architecture
Genomics (q-bio.GN), FOS: Computer and information sciences, FOS: Biological sciences, Hardware Architecture (cs.AR), Quantitative Biology - Genomics, Computer Science - Hardware Architecture
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 9 | |
| downloads | 11 |

Views provided by UsageCounts
Downloads provided by UsageCounts