
The human brain is highly dynamic and complex, supporting a remarkable range of functions by dynamically integrating and coordinating different brain regions and networks across multiple spatial and temporal scales. Research on the human brain has become truly interdisciplinary involving medicine, neurobiology, engineering, and related fields. A thorough understanding of the mechanisms of neuromodulation actions is urgently needed for stimulation parameters optimization, response prediction, and consistent therapy. This Research Topic aims to combine top-down and bottom-up methods to produce robust results that allow for a meaningful interpretation in terms of the underlying brain dynamics with an emphasis on brain decoding and neuromodulation.
brain dynamics, brain connectivity, neuromodulation, neural coupling, Neurosciences. Biological psychiatry. Neuropsychiatry, brain decoding, RC321-571, Neuroscience
brain dynamics, brain connectivity, neuromodulation, neural coupling, Neurosciences. Biological psychiatry. Neuropsychiatry, brain decoding, RC321-571, Neuroscience
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
