
arXiv: 2404.13021
In this paper, we explore a broad class of constrained saddle point problems with a bilevel structure, wherein the upper-level objective function is nonconvex-concave and smooth over compact and convex constraint sets, subject to a strongly convex lower-level objective function. This class of problems finds wide applicability in machine learning, encompassing robust multi-task learning, adversarial learning, and robust meta-learning. Our study extends the current literature in two main directions: (i) We consider a more general setting where the upper-level function is not necessarily strongly concave or linear in the maximization variable. (ii) While existing methods for solving saddle point problems with a bilevel structure are projection-based algorithms, we propose a one-sided projection-free method employing a linear minimization oracle. Specifically, by utilizing regularization and nested approximation techniques, we introduce a novel single-loop one-sided projection-free algorithm, requiring $\cO(ε^{-4})$ iterations to attain an $ε$-stationary solution, moreover, when the objective function in the upper-level is linear in the maximization component, our result improve to $\cO(ε^{-3})$. Subsequently, we develop an efficient single-loop fully projected gradient-based algorithm capable of achieving an $ε$-stationary solution within $\cO(ε^{-5})$ iterations. This result improves to $\cO(ε^{-4})$ when the upper-level objective function is strongly concave in the maximization component. Finally, we tested our proposed methods against the state-of-the-art algorithms for solving a robust multi-task regression problem to showcase the superiority of our algorithms.
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
