Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Space T...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Space Technologies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY NC ND
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autonomous Crosslink Radionavigation for a Lunar CubeSat Mission

Authors: Turan, E. (author); Speretta, S. (author); Gill, E.K.A. (author);

Autonomous Crosslink Radionavigation for a Lunar CubeSat Mission

Abstract

This study presents an autonomous orbit determination system based on crosslink radiometric measurements applied to a future lunar CubeSat mission to clearly highlight its advantages with respect to existing ground-based navigation strategies. This work is based on the Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) method which provides an autonomous navigation solution solely using satellite-to-satellite measurements, such as range and/or range-rate, to estimate absolute spacecraft states when at least one of the involved spacecraft has an orbit with a unique size, shape, and orientation. The lunar vicinity is a perfect candidate for this type of application due to the asymmetrical gravity field: the selected lunar mission, an Earth-Moon L2(EML2) Halo orbiter, has an inter-satellite link between a lunar elliptical frozen orbiter. Simulation results show that, even in case of high-measurement errors (in the order of 100 m, 1σ), the navigation filter estimates the true states of spacecraft at EML2 with an error in the order of 500 m for position, and 2 mm/s for velocity, respectively and the elliptical lunar frozen orbiter states can be estimated in the order of 100 m for position and 1 cm/s for velocity, respectively. This study shows that range-only measurements provide better state estimation than range-rate-only measurements for this specific situation. Different bias handling strategies are also investigated. It has been found that even a less accurate ranging method, such as data-aided ranging, provides a sufficient orbit determination solution. This would simplify the communication system design for the selected CubeSat mission. The most observable states are found to be position states of the lunar orbiter via the observability analysis. In addition, the best tracking windows are also investigated for the selected mission scenario.

Keywords

629, orbit determination, lunar space, FOS: Electrical engineering, electronic engineering, information engineering, small satellite, Systems and Control (eess.SY), autonomy, navigation, Electrical Engineering and Systems Science - Systems and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 13
    download downloads 14
  • 13
    views
    14
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
2
Average
Average
Average
13
14
Green
gold