Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Translational Engineering in Health and Medicine
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Monocular Variable Magnifications 3D Laparoscope System Using Double Liquid Lenses

Authors: Fan Mao; Tianqi Huang; Longfei Ma; Xinran Zhang; Hongen Liao;

A Monocular Variable Magnifications 3D Laparoscope System Using Double Liquid Lenses

Abstract

During minimal invasive surgery (MIS), the laparoscope only provides a single viewpoint to the surgeon, leaving a lack of 3D perception. Many works have been proposed to obtain depth and 3D reconstruction by designing a new optical structure or by depending on the camera pose and image sequences. Most of these works modify the structure of the conventional laparoscopes and cannot provide 3D reconstruction of different magnification views. In this study, we propose a laparoscopic system based on double liquid lenses, which provide doctors with variable magnification rates, near observation, and real-time monocular 3D reconstruction. Our system composes of an optical structure that can obtain auto magnification change and autofocus without any physically moving element, and a deep learning network based on the Depth from Defocus (DFD) method, trained to suit inconsistent camera intrinsic situations and estimate depth from images of different focal lengths. The optical structure is portable and can be mounted on conventional laparoscopes. The depth estimation network estimates depth in real-time from monocular images of different focal lengths and magnification rates. Experiments show that our system provides a 0.68-1.44x zoom rate and can estimate depth from different magnification rates at 6fps. Monocular 3D reconstruction reaches at least 6mm accuracy. The system also provides a clear view even under 1mm close working distance. Ex-vivo experiments and implementation on clinical images prove that our system provides doctors with a magnified clear view of the lesion, as well as quick monocular depth perception during laparoscopy, which help surgeons get better detection and size diagnosis of the abdomen during laparoscope surgeries.

Related Organizations
Keywords

Computer applications to medicine. Medical informatics, R858-859.7, Article, Laparoscopes, Deep learning network, laparoscope, minimal invasive surgery (MIS), Abdomen, Lens, Crystalline, Medical technology, depth from defocus (DFD), Laparoscopy, 3D reconstruction, R855-855.5, Lenses

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold