Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Complex & Intelligen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Complex & Intelligent Systems
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamic decomposition and hyper-distance based many-objective evolutionary algorithm

Authors: Xujian Wang; Fenggan Zhang; Minli Yao;

Dynamic decomposition and hyper-distance based many-objective evolutionary algorithm

Abstract

Abstract Nowadays many algorithms have appeared to solve many-objective optimization problems (MaOPs), yet the balance between convergence and diversity is still an open issue. In this paper, we propose a dynamic decomposition and hyper-distance based many-objective evolutionary algorithm named DHEA. On one hand, to maximize the diversity of the population, we use dynamic decomposition to decompose the whole population into multiple clusters. Specifically, first find pivot solutions according to the distribution of the population through the max–min-angle strategy, and then, assign solutions into different clusters according to their distances to pivot solutions. On the other hand, to select solutions from each cluster with balanced convergence and diversity, we propose hyper-distance based angle penalized distance for fitness assignment. Specifically, first compute the distance of solutions to the hyperplane and to the pivot solution to measure convergence and diversity, respectively, and then select the solution with the smallest fitness value. Hyper-distance, as convergence-related component, alleviates the bias towards problems with concave PFs. Besides, to promote convergence, the concept of knee points is introduced to mating selection. Through comparison with nine algorithms on 27 test problems, DHEA is validated to be effective and competitive to deal with MaOPs with different types of Pareto fronts and stable on different numbers of objectives.

Related Organizations
Keywords

Many-objective optimization, Hyperplane, Electronic computers. Computer science, Angle penalty distance, QA75.5-76.95, Information technology, T58.5-58.64, Hyper-distance, Dynamic decomposition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold