
It is now recognized in many domains that content-based image retrieval from a database of images cannot be carried out by using completely automated approaches. One such domain is medical radiology for which the clinically useful information in an image typically consists of gray level variations in highly localized regions of the image. Currently, it is not possible to extract these regions by automatic image segmentation techniques. To address this problem, we have implemented a human-in-the-loop (a physician-in-the-loop, more specifically) approach in which the human delineates the pathology bearing regions (PBR) and a set of anatomical landmarks in the image when the image is entered into the database. To the regions thus marked, our approach applies low-level computer vision and image processing algorithms to extract attributes related to the variations in gray scale, texture, shape, etc. In addition, the system records attributes that capture relational information such as the position of a PBR with respect to certain anatomical landmarks. An overall multidimensional index is assigned to each image based on these attribute values.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 241 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
