Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular and Cellular Probes
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-throughput identification of clinically important bacterial pathogens using DNA microarray

Authors: Yoo, SM; Lee, SY Lee, SangYup; Chang, KH; Yoo, SY; Yoo, NC; Keum, KC; Yoo, WM; +2 Authors

High-throughput identification of clinically important bacterial pathogens using DNA microarray

Abstract

Rapid and accurate detection of pathogenic bacteria is important for the treatment of patients with suitable antibiotics. Here we report the development of a diagnostic DNA microarray for the high-throughput identification of 39 pathogenic bacteria selected based on their high prevalence rate and/or difficulty of cultivation. The 23S ribosomal DNA and 16S-23S rDNA intergenic spacer region were used as target DNAs for pathogen detection. Universal- and species-specific probes were designed based on the unique and common sites within the target DNA sequences. New target DNA sequences were determined for the detection of 19 bacterial pathogens. The usefulness of the designed probes was validated using 39 reference bacteria and also with 515 clinical isolates from various clinical samples including blood, stool, pus, sputum, urine and cerebrospinal fluid. The DNA microarray developed in this study allowed efficient detection of bacterial pathogens with the specificities of 100%. The sensitivities were 100% as well except for the two pathogens, Enterobacter cloacae (75%) and Enterococcus faecium (85%). These results suggest that the DNA microarray-based assay developed in this study outperforms current diagnostic systems with respect to sensitivity, specificity, and high-throughput detection, and thus should be useful in pathogen diagnosis in the clinical setting.

Country
Korea (Republic of)
Keywords

570, Enterococcus faecium, 610, Bacteria/isolation & purification*, Communicable Diseases, Sensitivity and Specificity, Enterococcus faecium/pathogenicity, Communicable Diseases/microbiology, Enterobacter cloacae/pathogenicity, Enterobacter cloacae/isolation & purification, DNA Microarray, Diagnosis, DNA, Ribosomal Spacer, Enterobacter cloacae, Humans, Oligonucleotide Array Sequence Analysis, Infectious disease, Bacteria/genetics*, Bacteria, 500, Enterococcus faecium/genetics, Bacterial pathogen, Reproducibility of Results, DNA, Bacterial Infections, Probe, Bacteria/pathogenicity, Enterobacter cloacae/genetics, Ribosomal Spacer/genetics, Enterococcus faecium/isolation & purification, Oligonucleotide Array Sequence Analysis/methods*, Bacterial Infections/microbiology*, Bacterial Infections/diagnosis*

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Top 10%
Top 10%
Green
gold