Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Data Parallel Algorithm for XML DOM Parsing

Authors: Bhavik Shah; Praveen R. Rao; Bongki Moon; Mohan Rajagopalan;

A Data Parallel Algorithm for XML DOM Parsing

Abstract

The extensible markup language XML has become the de facto standard for information representation and interchange on the Internet. XML parsing is a core operation performed on an XML document for it to be accessed and manipulated. This operation is known to cause performance bottlenecks in applications and systems that process large volumes of XML data. We believe that parallelism is a natural way to boost performance. Leveraging multicore processors can offer a cost-effective solution, because future multicore processors will support hundreds of cores, and will offer a high degree of parallelism in hardware. We propose a data parallel algorithm called ParDOM for XML DOM parsing, that builds an in-memory tree structure for an XML document. ParDOM has two phases. In the first phase, an XML document is partitioned into chunks and parsed in parallel. In the second phase, partial DOM node tree structures created during the first phase, are linked together (in parallel) to build a complete DOM node tree. ParDOM offers fine-grained parallelism by adopting a flexible chunking scheme --- each chunk can contain an arbitrary number of start and end XML tags that are not necessarily matched. ParDOM can be conveniently implemented using a data parallel programming model that supports map and sort operations. Through empirical evaluation, we show that ParDOM yields better scalability than PXP [23] --- a recently proposed parallel DOM parsing algorithm --- on commodity multicore processors. Furthermore, ParDOM can process a wide-variety of XML datasets with complex structures which PXP fails to parse.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!