Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Leukemiaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Leukemia
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Leukemia
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Leukemia
Article . 2020
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prevalence and dynamics of clonal hematopoiesis caused by leukemia-associated mutations in elderly individuals without hematologic disorders

Authors: Danica Midic; Jenny Rinke; Florian Perner; Violetta Müller; Anna Hinze; Frank Pester; Jürgen Landschulze; +6 Authors

Prevalence and dynamics of clonal hematopoiesis caused by leukemia-associated mutations in elderly individuals without hematologic disorders

Abstract

AbstractClonal hematopoiesis is frequently observed in elderly people. To investigate the prevalence and dynamics of genetic alterations among healthy elderly individuals, a cohort of 50 people >80 years was genotyped for commonly mutated leukemia-associated genes by targeted deep next-generation sequencing. A total of 16 somatic mutations were identified in 13/50 (26%) individuals. Mutations occurred at low variant allele frequencies (median 11.7%) and remained virtually stable over 3 years without development of hematologic malignancies in affected individuals. With DNMT3A mutations most frequently detected, another cohort of 160 healthy people spanning all age groups was sequenced specifically for DNMT3A revealing an overall mutation rate of 6.2% (13/210) and an age-dependent increase of mutation prevalence. A significant difference (p = 0.017) in the DNMT3A expression pattern was detected between younger and healthy elderly people as determined by qRT-PCR. To evaluate the selection of clonal hematopoietic stem cells (HSCs), bone marrow of two healthy individuals with mutant DNMT3A was transplanted in a humanized mouse model. Xenografts displayed stable kinetics of DNMT3A mutations over 8 months. These findings indicate that the appearance of low-level clones with leukemia-associated mutations is a common age-associated phenomenon, but insufficient to initiate clonal selection and expansion without the additional influence of other factors.

Country
Germany
Keywords

Aged, 80 and over, Male, Leukemia, Age Factors, Article, Clone Cells, DNA Methyltransferase 3A, Hematopoiesis, Mice, Female [MeSH] ; Age Factors [MeSH] ; Mutation [MeSH] ; Aged, 80 and over [MeSH] ; Leukaemia ; Aged [MeSH] ; Humans [MeSH] ; Leukemia/genetics [MeSH] ; RNA, Messenger/analysis [MeSH] ; Animals [MeSH] ; DNA (Cytosine-5-)-Methyltransferases/genetics [MeSH] ; Hematopoiesis/genetics [MeSH] ; Mice [MeSH] ; Article ; Male [MeSH] ; Clone Cells [MeSH] ; Cancer genetics ; Prevalence [MeSH], Mutation, Prevalence, Animals, Humans, Female, DNA (Cytosine-5-)-Methyltransferases, RNA, Messenger, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 1%
Top 10%
Top 10%
Green
hybrid