
Compared with channel-based audio coding, the object-based audio coding has a definite advantage in meeting the user’s demands of personalized control. However, in the conventional Spatial Audio Object Coding (SAOC), each frame is divided into 28 sub-bands. All frequency points in one sub-band share the common parameter. Under the SAOC framework, the bitrate can be saved, but aliasing distortion is prone to occur, which will influence the listening experience of audiences. In order to obtain higher perceptual quality, we propose a Stacked Sparse Autoencoder (SSAE) pipeline as overlapped modules. Each module extracted the efficient feature of side information from its preceding module. Then we can reduce the dimensionality of side information parameters for saving bitrate, and well reconstruct audio objects, thereby providing favorable auditory perception. Compared with conventional SAOC, TS-SAOC, and SVD-SAOC, both objective and subjective results show that the proposed method can achieve the best sound quality of the output signal at the same bitrate.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
