
Due to the redundant nature of DNA synthesis and sequencing technologies, a basic model for a DNA storage system is a multi-draw "shuffling-sampling" channel. In this model, a random number of noisy copies of each sequence is observed at the channel output. Recent works have characterized the capacity of such a DNA storage channel under different noise and sequencing models, relying on sophisticated typicality-based approaches for the achievability. Here, we consider a multi-draw DNA storage channel in the setting of noise corruption by a binary erasure channel. We show that, in this setting, the capacity is achieved by linear coding schemes. This leads to a considerably simpler derivation of the capacity expression of a multi-draw DNA storage channel than existing results in the literature.
6 pages, 5 figures, 2 appendices, submitted to CISS 2022
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
