Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wait-free Hyperobjects for Task-Parallel Programming Systems

Authors: Martin Wimmer;

Wait-free Hyperobjects for Task-Parallel Programming Systems

Abstract

Hyperobjects are efficient mechanisms to coordinate accesses to shared variables and data-structures in task-parallel programming models, where each thread can operate on its own coordinated local view of the shared data. Synchronization between local views is restricted to occur at well-defined points in the execution, and can be left to the hyperobject implementation. This paper provides a general model for hyperobjects that does not require programming language or runtime support and may therefore be used with any task-parallel programming system. We show that hyperobjects can be efficiently implemented in a wait-free manner, meaning that all concurrent accesses to a hyperobject are guaranteed to complete in a bounded number of steps. The novel finisher hyperobject presented in this paper provides transitive termination detection for task-parallel programs. It can be used to efficiently implement task synchronization primitives like finish. However, finishers can also be used to manage reference-counted resources, e.g. shared pointers and copy-on-write pointers. Finally, we provide a wait-free variant of the associative reducer hyperobject known from the Cilk++ programming language.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!