Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Change Biology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fuels Mediate the Influence of Climate Teleconnections on Wildfires in Dryland Ecosystems

Authors: Qu, Yuquan; Veraverbeke, Sander; Miralles, Diego G.; Fan, Jingfang; Vereecken, Harry; Montzka, Carsten;

Fuels Mediate the Influence of Climate Teleconnections on Wildfires in Dryland Ecosystems

Abstract

ABSTRACTClimate teleconnections modulate regional wildfire occurrence. Understanding the underlying mechanisms is critical for sub‐seasonal to annual wildfire predictions since the magnitude of certain teleconnection climate modes (TCMs) intensifies or they may undergo phase shifts. Here, we study how TCMs govern wildfire activity and compare the effects of weather and fuels in mediating the influence of TCMs on wildfires. Globally, burned area (BA) is predictable by a single TCM in 25.4% of the burnable (vegetated) regions, with Australia and eastern Siberia identified as the two hot spots with the highest probability out of a total of 10. Tropical oceans are the primary sources of teleconnection‐driven variability in global BA. Our study finds that in dryland hot spots such as Australia, the Horn of Africa, and the northern Middle East, the lagged mediating effects of fuels outweigh the immediate mediating effects of weather. Whereas in hot spots with dense vegetation, like northeastern South America and Southeast Asia, the immediate mediating effects of weather are generally more dominant. In other hot spots, fuels can still serve as a key pathway through which specific TCMs influence wildfire activity. This study highlights the important role of fuels in transmitting the delayed impacts of TCMs‐induced weather anomalies on regional wildfire activity. This study also underlines the importance of refining fuel management strategies and integrating fuel conditions in teleconnection‐related wildfire attribution and prediction frameworks, which is crucial given the projected changing patterns of teleconnections.

Related Organizations
Keywords

info:eu-repo/classification/ddc/570, 570, teleconnection, fuel and weather conditions, hot spot, mediating effect, wildfire, time lag, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid