
doi: 10.3906/elk-1701-22
Scheduling in a multiprocessor parallel computing environment is an NP-hard optimization problem. The main objective of this work is to obtain a schedule in a distributed computing system (DCS) environment that minimizes the makespan and maximizes the throughput. We study the use of two of the evolutionary swarm optimization techniques, the firefly algorithm and the articial bee colony (ABC) algorithm, to optimize the scheduling in a DCS. We also enhance the traditional ABC algorithm by merging the genetic algorithm techniques of crossover and mutation with the employed bee phase and the onlooker phase, respectively. The resulting enhanced ABC algorithm is used as the scheduling algorithm and is evaluated against the re y and ABC algorithms. The results obtained show that in a distributed environment with a large number of jobs and resources, multiobjective scheduling using evolutionary algorithms can perform well in terms of minimizing makespan and maximizing throughput.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
