
In this paper, the new algorithm based on clustered multitask network is proposed to solve spectral unmixing problem in hyperspectral imagery. In the proposed algorithm, the clustered network is employed. Each pixel in the hyperspectral image considered as a node in this network. The nodes in the network are clustered using the fuzzy c-means clustering method. Diffusion least mean square strategy has been used to optimize the proposed cost function. To evaluate the proposed method, experiments are conducted on synthetic and real datasets. Simulation results based on spectral angle distance, abundance angle distance and reconstruction error metrics illustrate the advantage of the proposed algorithm compared with other methods.
one column, 22 pages, 12 figures, journal. arXiv admin note: substantial text overlap with arXiv:1902.07593, arXiv:1812.10788
FOS: Computer and information sciences, distributed optimization; fuzzy c-means clustering; hyperspectral data; least mean square strategy; spectral unmixing, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, distributed optimization; fuzzy c-means clustering; hyperspectral data; least mean square strategy; spectral unmixing, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
