Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Searching for Closely Related Ligands with Different Mechanisms of Action Using Machine Learning and Mapping Algorithms

Authors: Jenny Balfer; Martin Vogt 0001; Jürgen Bajorath;

Searching for Closely Related Ligands with Different Mechanisms of Action Using Machine Learning and Mapping Algorithms

Abstract

Supervised machine learning approaches, including support vector machines, random forests, Bayesian classifiers, nearest-neighbor similarity searching, and a conceptually distinct mapping algorithm termed DynaMAD, have been investigated for their ability to detect structurally related ligands of a given receptor with different mechanisms of action. For this purpose, a large number of simulated virtual screening trials were carried out with models trained on mechanistic subsets of different classes of receptor ligands. The results revealed that ligands with the desired mechanism of action were frequently contained in database selection sets of limited size. All machine learning approaches successfully detected mechanistic subsets of ligands in a large background database of druglike compounds. However, the early enrichment characteristics considerably differed. Overall, random forests of relatively simple design and support vector machines with Gaussian kernels (Gaussian SVMs) displayed the highest search performance. In addition, DynaMAD was found to yield very small selection sets comprising only ~10 compounds that also contained ligands with the desired mechanism of action. Random forest, Gaussian SVM, and DynaMAD calculations revealed an enrichment of compounds with the desired mechanism over other mechanistic subsets.

Related Organizations
Keywords

Artificial Intelligence, Computational Biology, Ligands, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!