Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Data and Network Science
Article . 2022 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/xd...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/0x...
Other literature type . 2022
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A comparative study on the performance of maximum likelihood, generalized least square, scale-free least square, partial least square and consistent partial least square estimators in structural equation modeling

دراسة مقارنة حول أداء الحد الأقصى للاحتمال، وأقل مربع معمم، وأقل مربع خالٍ من المقاييس، وأقل مربع جزئي، وأقل مربع جزئي متسق في نمذجة المعادلة الهيكلية
Authors: Raudhah Zulkifli; Nazim Aimran; Sayang Mohd Deni; Fatin Najihah Badarisam;

A comparative study on the performance of maximum likelihood, generalized least square, scale-free least square, partial least square and consistent partial least square estimators in structural equation modeling

Abstract

Structural equation modeling offers various estimation methods for estimating parameters. The most used method in covariance-based structural equation modeling (CB-SEM) is the maximum likelihood (ML) estimator. The ML estimator is typically used when fitting models with normally distributed data. The growth of partial least squares path modeling (PLS-PM), including consistent partial least squares (PLSc), has also been noticed by researchers in the SEM fields. The PLSc has elevated interest in the scholastic setting in measuring the performance of various estimation methods in structural equation modeling. The choice of estimation methods has substantial impact in yielding parameter estimates. There could be a trade-off among the estimation methods’ ability to deal with different types of data based on the model tested. Accordingly, this study aims to compare the performance of ML, generalized least squares (GLS), and scale-free least squares (SFLS) for CB-SEM as well as partial least squares (PLS) and consistent partial least squares (PLSc). Multivariate normal data were generated using Monte Carlo simulation with pre-determined population parameters and sample sizes using R Programming packages. To produce the estimated values, data analysis was performed using AMOS and SmartPLS for CB-SEM and PLS-SEM, respectively. The findings illustrate notable similarities between CB-SEM (ML) and PLS-SEM results when the true indicator loading is certainly high.

Keywords

Big Data Analysis in Various Industries, FOS: Computer and information sciences, Covariance, Statistics, Social Sciences, HD28-70, Applied mathematics, Estimator, Structural equation modeling, Multivariate statistics, Partial least squares regression, Machine Learning, H, Computer Science, Physical Sciences, Management. Industrial management, FOS: Mathematics, Mathematics, Least-squares function approximation, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold