Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Medical Imaging
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust Stochastic Neural Ensemble Learning With Noisy Labels for Thoracic Disease Classification

Authors: Hongyu Wang 0011; Jiang He; Hengfei Cui; Bo Yuan; Yong Xia 0001;

Robust Stochastic Neural Ensemble Learning With Noisy Labels for Thoracic Disease Classification

Abstract

Chest radiography is the most common radiology examination for thoracic disease diagnosis, such as pneumonia. A tremendous number of chest X-rays prompt data-driven deep learning models in constructing computer-aided diagnosis systems for thoracic diseases. However, in realistic radiology practice, a deep learning-based model often suffers from performance degradation when trained on data with noisy labels possibly caused by different types of annotation biases. To this end, we present a novel stochastic neural ensemble learning (SNEL) framework for robust thoracic disease diagnosis using chest X-rays. The core idea of our method is to learn from noisy labels by constructing model ensembles and designing noise-robust loss functions. Specifically, we propose a fast neural ensemble method that collects parameters simultaneously across model instances and along optimization trajectories. Moreover, we propose a loss function that both optimizes a robust measure and characterizes a diversity measure of ensembles. We evaluated our proposed SNEL method on three publicly available hospital-scale chest X-ray datasets. The experimental results indicate that our method outperforms competing methods and demonstrate the effectiveness and robustness of our method in learning from noisy labels. Our code is available at https://github.com/hywang01/SNEL.

Related Organizations
Keywords

Stochastic Processes, Deep Learning, Thoracic Diseases, Databases, Factual, Humans, Radiographic Image Interpretation, Computer-Assisted, Radiography, Thoracic, Neural Networks, Computer, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!