Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sistemnì Doslìdženâ ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Brain tumor diagnostics with application of hybrid fuzzy convolutional neural networks

Authors: Zaychenko, Yuriy P.; Zdor, Kostiantyn A.; Hamidov, Galib;

Brain tumor diagnostics with application of hybrid fuzzy convolutional neural networks

Abstract

Рассмотрена проблема классификации опухолей головного мозга по медицинским МРТ-изображениям. Для ее решения разработаны гибридные нечеткие сверточные нейронные сети (CNN), в которых сверточные сети VGG-16 и ResNetV2_50 были использованы для извлечения признаков изображения, а нечеткая нейронная сеть ANFIS — в качестве классификатора. Разработаны алгоритмы обучения гибридных сетей. Проведены экспериментальные исследования предложенных гибридных сетей на стандартном датасете МРТ-изображений головного мозга и сравнения результатов с известными альтернативными структурами сверточных сетей.

Розглянуто проблему класифікації пухлин головного мозку по МРТ- зображеннях. Для її вирішення розроблено гібридні нечіткі згорткові нейронні мережі, у яких згорткові мережі CNN VGG-16 і ResNetV2_50 використані для екстракції ознак зображень, а нечітка нейронна мережа ANFIS — як класифікатор пухлин. Розроблено алгоритми навчання гібридних мереж. Виконано експериментальні дослідження запропонованих гібридних мереж на стандартному датасеті МРТ-зображень головного мозку і порівняння результатів з відомими альтернативними структурами згорткових мереж.

The problem of classification of brain tumors on medical images is considered. For its solution hybrid CNN-ANFIS is developed in which convolutional neural network VGG-16 and ResNetV2_50 are used as feature extractors while ANFIS is used as the classifier. Training algorithms of ANFIS were implemented. The experimental investigations of the suggested hybrid network on the standard dataset Brain MRI images for brain tumor detection were carried out and comparison with known results was performed.

Keywords

medical diagnostics; brain tumor classification; ANFIS; CNN; hybrid network, медична діагностика; класифікація пухлин головного мозку; нечітка нейромережа ANFIS; згорткові нейронні мережі; гібридна мережа, медицинская диагностика; классификация опухолей головного мозга; нечеткая нейронная сеть ANFIS; сверточные нейронные сети; гибридная сеть

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold