Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://constellatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://constellation.uqac.ca/...
Book
License: CC BY NC ND
Data sources: UnpayWall
https://doi.org/10.1522/030120...
Book . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Research on distributed data mining system and algorithm based on multi-agent /

Authors: Lingxia Jiang;

Research on distributed data mining system and algorithm based on multi-agent /

Abstract

Data mining means extracting hidden, previous unknown knowledge and rules with potential value to decision from mass data in database. Association rule mining is a main researching area of data mining area, which is widely used in practice. With the development of network technology and the improvement of level of IT application, distributed database is commonly used. Distributed data mining is mining overall knowledge which is useful for management and decision from database distributed in geography. It has become an important issue in data mining analysis. Distributed data mining can achieve a mining task with computers in different site on the internet. It can not only improve the mining efficiency, reduce the transmitting amount of network data, but is also good for security and privacy of data. Based on related theories and current research situation of data mining and distributed data mining, this thesis will focus on analysis on the structure of distributed mining system and distributed association rule mining algorithm. This thesis first raises a structure of distributed data mining system which is base on multi-agent. It adopts star network topology, and realize distributed saving mass data mining with multi-agent. Based on raised distributed data mining system, this these brings about a new distributed association rule mining algorithm?RK-tree algorithm. RK-tree algorithm is based on the basic theory of twice knowledge combination. Each sub-site point first mines local frequency itemset from local database, then send the mined local frequency itemset to the main site point. The main site point combines those local frequency itemset and get overall candidate frequency itemset, and send the obtained overall candidate frequency itemset to each sub-site point. Each sub-site point count the supporting rate of those overall candidate frequency itemset and sent it back to the main site point. At last, the main site point combines the results sent by sub-site point and gets the overall frequency itemset and overall association rule. This algorithm just needs three times communication between the main and sub-site points, which greatly reduces the amount and times of communication, and improves the efficiency of selection. What's more, each sub-site point can fully use existing good centralized association rule mining algorithm to realize local association rule mining, which can enable them to obtain better local data mining efficiency, as well as reduce the workload. This algorithm is simple and easy to realize. The last part of this thesis is the conclusion of the analysis, as well as the direction of further research.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid