Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hydrological Science...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hydrological Sciences Journal
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithms

Authors: Khabat Khosravi; Ali Golkarian; Martijn J. Booij; Rahim Barzegar; Wei Sun; Zaher Mundher Yaseen; Amir Mosavi;

Improving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithms

Abstract

In the current paper, the efficiency of three new standalone data-mining algorithms [M5 Prime (M5P), Random Forest (RF), M5Rule (M5R)] and six novel hybrid algorithms of bagging (BA-M5P, BA-RF and BA-M5R) and Attribute Selected Classifier (ASC-M5P, ASC-RF and ASC-M5R) for streamflow prediction were assessed and compared with an autoregressive integrated moving average (ARIMA) model as a benchmark. The models used precipitation (P) and streamflow (Q) data from the period 1979–2012 for training and validation (70% and 30% of data, respectively). Different input combinations were prepared using both P and Q with different lag times. The best input combination proved to be that in which all of the the data were used (i.e. R and Q – with lag times). Overall, employing Q with different lag times proved to be more effective than using only P as input for streamflow prediction. Although all models showed very good predictive power, BA-M5P outperformed the other models.

Keywords

Attribute Selected Classifier, 2022 OA procedure, M5Rule, Taleghan catchment, data mining, streamflow modelling, M5P, bagging, random forest

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 1%
Top 10%
Top 1%
bronze