
In the paper we propose a new fuzzy interval type-2 C-ordered-means clustering algorithm for incomplete data. The algorithm uses both marginalisation and imputation to handle missing values. Thanks to imputation values in incomplete items are not lost, thanks to marginalisation imputed data can be distinguished from original complete items. The algorithm elaborates rough fuzzy sets (interval type-2 fuzzy sets) to model imprecision and incompleteness of data. For handling outliers the algorithm uses loss functions, ordering technique, and typicalities. Outliers are assigned with low values of typicalities. The paper describes also a new imputation technique–imputation with values from k nearest neighbours.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
