Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxygen regime in research on the work of plugflow aeration tanks with fixed biomasses

Authors: Oleynik, Aleksandr; Airapetian, Tamara;

Oxygen regime in research on the work of plugflow aeration tanks with fixed biomasses

Abstract

The paper presents a mathematical description of biological wastewater treatment processes, whereas the study develops more reliable methods for calculating the parameters of aerobic wastewater treatment from organic contaminants in aerotanks. A general mathematical model has been constructed for the evaluation and analysis of the joint removal of organic pollutants (OPs) by weighed and fixed biocenoses in plugflow aerotanks. This model takes into account the provision of the oxidation process with the required amount of oxygen and the peculiarities of the joint removal of organic pollutants by a biofilm, which is formed on the surface of additional loading, and a suspended biocenosis. Some simplifications of the model, which help obtain analytical dependencies, are suggested and proved. It is assumed that the process of OP oxidation with suspended active sludge occurs in a zero-order reaction, and in a biofilm, it occurs by a first-order reaction. The implementation of the proposed model helps estimate the influence of various purification factors in plugflow aerotanks and substantiate the most economical and effective parameters of OP removal in these structures. The study considers the possible technological and design schemes for plugflow aerotanks when a reactor containing elements with a fixed biocenosis is located first in the direction of the flow of sewage and vice versa. It is proposed to use such technological solutions to intensify the work of biological treatment plants such as aerotanks.

Keywords

UDC 628.35, аеротенк-витискувач; кисневий режим; органічні забруднення; активний мул; біоплівка, аеротенк-вытеснитель; кислородный режим; органические загрязнения; активный ил; биопленка, plugflow aerotank; oxygen regime; mathematical model; organic contamination; active sludge; biofilm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold