
The low n-rank tensor recovery problem is an interesting extension of the compressed sensing. This problem consists of finding a tensor of minimum n-rank subject to linear equality constraints and has been proposed in many areas such as data mining, machine learning and computer vision. In this paper, operator splitting technique and convex relaxation technique are adapted to transform the low n-rank tensor recovery problem into a convex, unconstrained optimization problem, in which the objective function is the sum of a convex smooth function with Lipschitz continuous gradient and a convex function on a set of matrices. Furthermore, in order to solve the unconstrained nonsmooth convex optimization problem, an accelerated proximal gradient algorithm is proposed. Then, some computational techniques are used to improve the algorithm. At the end of this paper, some preliminary numerical results demonstrate the potential value and application of the tensor as well as the efficiency of the proposed algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
