Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/allert...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear Coding for Gaussian Two-Way Channels

Authors: Junghoon Kim; Seyyedali Hosseinalipour; Taejoon Kim; David J. Love; Christopher G. Brinton;

Linear Coding for Gaussian Two-Way Channels

Abstract

We consider linear coding for Gaussian two-way channels (GTWCs), in which each user generates the transmit symbols by linearly encoding both its message and the past received symbols (i.e., the feedback information) from the other user. In Gaussian one-way channels (GOWCs), Butman has proposed a well-developed model for linear encoding that encapsulates feedback information into transmit signals. However, such a model for GTWCs has not been well studied since the coupling of the encoding processes at the users in GTWCs renders the encoding design non-trivial and challenging. In this paper, we aim to fill this gap in the literature by extending the existing signal models in GOWCs to GTWCs. With our developed signal model for GTWCs, we formulate an optimization problem to jointly design the encoding/decoding schemes for both the users, aiming to minimize the weighted sum of their transmit powers under signal-to-noise ratio constraints. First, we derive an optimal form of the linear decoding schemes under any arbitrary encoding schemes employed at the users. Further, we provide new insights on the encoding design for GTWCs. In particular, we show that it is optimal that one of the users (i) does not transmit the feedback information to the other user at the last channel use, and (ii) transmits its message only over the last channel use. With these solution behaviors, we further simplify the problem and solve it via an iterative two-way optimization scheme. We numerically demonstrate that our proposed scheme for GTWCs achieves a better performance in terms of the transmit power compared to the existing counterparts, such as the non-feedback scheme and one-way optimization scheme.

Accepted for publication in 58th Annual Allerton Conference on Communication, Control, and Computing

Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Signal Processing, Electrical Engineering and Systems Science - Systems and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green