Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Resources Policyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Resources Policy
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming

Authors: Ngoc Luan Mai; Erkan Topal; Oktay Erten; Bruce Sommerville;

A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming

Abstract

Abstract Stochastic integer programming (SIP) has recently been studied to manage the risk caused by geological uncertainty when solving mine planning and production scheduling problems of open pit mines. However, similar to other mathematical programming techniques that deploy integer variables, the main obstacle of applying SIP on real-life datasets stems from the enormous number of integer variables required by its mathematical formulation, which is a function of number of mining blocks being processed and lifespan of the mining project. In this paper, a new framework is proposed for stochastic mine planning process which makes the application of SIP on large-scale datasets tractable. Firstly, mining blocks of simulated orebody models are clustered using TopCone algorithm to significantly reduce the scale of the data. A new SIP model is then developed to work on aggregated blocks so not only the net present value (NPV) is maximised and the risk of not meeting production targets is minimised, but also solution can be obtained in a practical timeframe. The scheduling result of the new SIP model is also compared to an integer programming (IP) model to highlight the ability to manage risk and generating higher NPV on a case study of a large-scale multi-element iron ore deposit in Pilbara region, Western Australia.

Keywords

510

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!