Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Remote Sensingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Remote Sensing
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Gridless Non-Uniform Linear Array Direction of Arrival Estimation Approach Based on the Improved Alternating Descent Conditional Gradient Algorithm for Automotive Radar System

Authors: Mingxiao Shao; Yizhe Fan; Yan Zhang; Zhe Zhang; Jie Zhao; Bingchen Zhang;

A Novel Gridless Non-Uniform Linear Array Direction of Arrival Estimation Approach Based on the Improved Alternating Descent Conditional Gradient Algorithm for Automotive Radar System

Abstract

In automotive millimeter-wave (MMW) radar systems, achieving high-precision direction of arrival (DOA) estimation with a limited number of array elements is a crucial research focus. Compressive sensing (CS) techniques have been demonstrated to offer superior performance in DOA estimation compared to spectral estimation methods. However, traditional CS methods suffer from an off-grid effect, which causes their reconstruction results to deviate from the actual positions of the signal sources, thereby reducing the accuracy. Currently, as a gridless method, atomic norm minimization (ANM) has shown effectiveness in DOA estimation for uniform linear arrays (ULAs). However, the performance of ANM is suboptimal in non-uniform linear arrays (NULAs), and their computational efficiency is not satisfactory. In this paper, we propose a novel algorithm for DOA estimation in NULA, drawing inspiration from the alternating descent conditional gradient algorithm framework. First, we construct an atomic set based on the observation scene and select the atoms with the highest correlation to the residuals as potential signal sources for global estimation. Then, we construct a mapping function for the signal sources in the continuous domain and perform conditional gradient descent in the neighborhood of each signal source, addressing the bias introduced by the off-grid effect. We compared the proposed algorithm with ANM, Iterative Shrinkage Thresholding (IST), and Multiple Signal Classification (MUSIC) algorithms. Simulation experiments validate that the proposed algorithm effectively addresses the off-grid effect and is applicable to DOA estimation in coprime and random arrays. Furthermore, real data experiments confirm the effectiveness of the proposed algorithm.

Related Organizations
Keywords

Science, Q, compressive sensing, DOA estimation, off-grid effect, millimeter-wave radar, non-uniform linear array

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold