Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Safety...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Safety and Natural Resources
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Model of interaction of pollution with aquatic technogenically loaded ecosystem

Authors: Azarov, Sergii I.; Kharlamova, Olena V.;

Model of interaction of pollution with aquatic technogenically loaded ecosystem

Abstract

Scientific researches are devoted to the development of the theory of functional stability of ecosystems, as the stability of the functional of ecological safety. The conceptual (system of views of ensuring the ecosystem functional stability) and theoretical (the idea is comprehensively researched using scientifically-based approaches, methods, techniques, algorithms and mathematical models) of the theory of functional stability of ecosystems are offered. The theoretical bases of sustainable development of technogenically loaded ecosystems under conditions of synergism of components of ecological danger of different genesis are considered. On the example of the model of interaction of pollution of aquatic ecosystem its stability is investigated. The processes are described by Lot-Volterra type equations. This uses a modification of the first Lyapunov method, which is designed to study the stability of aquatic ecosystems of non-autonomous differential equations. For this purpose, a family of linear operators is constructed and the stability of systems of differential equations is determined by the signs of their logarithmic norms. Criteria for stability and asymptotic stability of fixed points by Lyapunov were obtained in the model of interaction of pollution with the aquatic ecosystem. The proposed method can be used to study a wide range of other ecosystems.

Keywords

екосистема; екологічна безпека; техногенне навантаження; динамічний процес; стабільність; рівняння Лотки – Вольтерри; модель; синергізм, ecosystem; ecological safety; technogenic load; dynamic process; stability; Volterra tray equation; model; synergism

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid