Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Throughput regions for fading interference channels under statistical QoS constraints

Authors: Deli Qiao; M. Cenk Gursoy; Senem Velipasalar;

Throughput regions for fading interference channels under statistical QoS constraints

Abstract

Communication over fading interference channels in the presence of statistical quality of service (QoS) constraints is considered. Effective capacity, which provides the maximum constant arrival rate that a given service process can support while satisfying statistical queueing constraints, is employed as the performance metric. In a two-user and buffer constrained setting, arrival rate regions that can be supported in the fading interference channel are studied. More specifically, for three different strategies, namely treating interference as noise, time division with power control and simultaneous decoding, achievable throughput regions are determined. It is demonstrated that as in Gaussian interference channels, simultaneous decoding expectedly performs better (i.e., supports higher arrival rates) when interfering links are strong, and treating interference as noise leads to improved performance when the interfering cross links are weak while time-division strategy should be preferred in between. When the QoS constraints become more stringent, it is observed that the sum-rates achieved by different schemes all diminish and approach each other, and time division with power control interestingly starts outperforming others over a wider range of cross-link strengths.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!