Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Entropyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Entropy
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Entropy
Article . 2025
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Vector Random Linear Network Coding in Wireless Broadcasts

Authors: Rina Su; Chengji Zhao; Qifu Sun; Zhongshan Zhang;

On Vector Random Linear Network Coding in Wireless Broadcasts

Abstract

Compared with scalar linear network coding (LNC) formulated over the finite field GF(2L), vector LNC offers enhanced flexibility in the code design by enabling linear operations over the vector space GF(2)L and demonstrates a number of advantages over scalar LNC. While random LNC (RLNC) has shown significant potential to improve the completion delay performance in wireless broadcasts, most prior studies focus on scalar RLNC. In particular, it is well known that, with increasing L, primitive scalar RLNC over GF(2L) asymptotically achieves the optimal completion delay. However, the completion delay performance of primitive vector RLNC remains unexplored. This work aims to fill in this blank. We derive closed-form expressions for the probability distribution and the expected value of both the completion delay at a single receiver and the system completion delay. We further unveil a fundamental limitation that is different from scalar RLNC: even for large enough L, primitive vector RLNC over GF(2)L inherently fails to reach optimal completion delay. In spite of this, the gap between the expected completion delay at a receiver and the optimal one is shown to be a constant smaller than 0.714, which implies that the expected completion delay normalized by the number P of original packets is asymptotically optimal with increasing P. We also validate our theoretical characterization through numerical simulations. Our theoretical characterization establishes primitive vector RLNC as a performance baseline for the future design of practical vector RLNC schemes with different design goals.

Related Organizations
Keywords

wireless broadcast, QB460-466, Science, Physics, QC1-999, Q, vector linear network coding (VLNC), completion delay, Astrophysics, random linear network coding (RLNC), Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities