
Background: Edaravone, a potent antioxidant, has limited brain bioavailability due to poor solubility and restricted permeability across the blood-brain barrier (BBB). Intranasal delivery offers a promising alternative for brain targeting by bypassing the BBB. Objective: To develop and evaluate a nanospanlastic-based in-situ nasal gel formulation of edaravone for enhanced brain delivery. Methodology: A Quality by Design (QbD) approach was employed to identify and optimize critical formulation variables using Plackett-Burman and Central Composite Design. The optimized nanospanlastics were incorporated into a gellan gum-based ion-activated in-situ nasal gel and characterized through in vitro, ex vivo, and in vivo studies. Results and Discussion: The optimized formulation exhibited a particle size of 213.4 nm, a drug entrapment efficiency of 67.59%, and rapid gelation upon contact with nasal fluid. In vitro diffusion showed over 80% drug release within 30 minutes, while ex vivo studies confirmed improved permeation (flux: 7.8067 µg/cm²/hr). Histopathology revealed no nasal mucosal irritation. Pharmacokinetic studies in rats demonstrated significantly enhanced brain and plasma exposure compared to the marketed edaravone injection, with higher Cmax (78.73 ng/mL), Tmax (121.2 min), and AUC. Conclusion: The developed nanospanlastic-based nasal gel offers a non-invasive, effective strategy for brain delivery of edaravone, with potential to improve therapeutic outcomes in neurological disorders.
quality by design, nasal formulation, brain targeting, Edaravone, nanospanlastics
quality by design, nasal formulation, brain targeting, Edaravone, nanospanlastics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
