Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Estimating Simultaneous and Proportional Finger Force Intention Based on sEMG Using a Constrained Autoencoder

Authors: Younggeol Cho; Pyungkang Kim; Kyung-Soo Kim;

Estimating Simultaneous and Proportional Finger Force Intention Based on sEMG Using a Constrained Autoencoder

Abstract

To boost the usability of a robotic prosthetic hand, providing degrees of freedom to every single finger is inevitable. Under the name of simultaneous proportional control (SPC), many studies have proposed methods to achieve this goal. In this paper, we propose a method to generate a regression model of a neuromuscular system called the Constrained AutoEncoder Network (CAEN) that estimates finger forces using a surface electromyogram (sEMG). Modifying the autoencoder from deep learning, the model is generated in a semi-unsupervised manner where only sEMG data and finger labels are used. In the learning process, the finger labels are used at the central layer of the network, where the three finger forces are estimated, to prevent penetration of other finger signals to each finger node and the network is trained in the constrained manner. This process results in independence among estimated finger forces such that the manipulability of multiple fingers is highly improved. The proposed model was compared with four previously reported SPC models in two tests: offline and online tests. In the offline test, the CAEN showed good results but not the best results. However, in the online test, which involved reaching target positions for three fingers simultaneously and proportionally, the proposed model showed the best results for three of six online performance indices (the completion rate, completion time, and throughput). Emphasizing the independence among estimated finger forces in the training process is the key point of the proposed method distinct from previous studies and the results showed that it was effective in the online control.

Keywords

finger intention estimation, neural network, surface electromyogram (sEMG), Autoencoder, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold