Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Fluids
Article . 1998 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 1998
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A method for computing compressible, highly stratified flows in astrophysics based on operator splitting

Authors: Hujeirat, A.; Rannacher, R.;

A method for computing compressible, highly stratified flows in astrophysics based on operator splitting

Abstract

Summary: A new numerical approach based on consistent operator splitting is presented for computing compressible, highly stratified flows in astrophysics. The algorithm is particularly designed to search for steady or almost steady solutions for the time-dependent Navier-Stokes equations, describing viscous flow under the influence of a strong gravitational field. The algorithm proposed is multidimensional and works in Cartesian, cylindrical or spherical co-ordinates. It uses a second-order finite volume scheme with third-order upwinding and a second-order time discretization. We use an adaptive time step control and monotonic multilevel grid distribution to speed up convergence. This method has been incorporated into a hydrodynamical code by which, for the first time, for two-dimensional models the dynamics of the boundary layer in the accretion disk around a compact star could be computed over the whole viscous time scale.

Related Organizations
Keywords

Reaction effects in flows, Computational methods for problems pertaining to astronomy and astrophysics, third-order upwinding, Gas dynamics (general theory), Finite volume methods applied to problems in fluid mechanics, boundary layer, adaptive time step control, monotonic multilevel grid distribution, time-dependent Navier-Stokes equations, second-order finite volume scheme, second-order time discretization, hydrodynamical code, Hydrodynamic and hydromagnetic problems in astronomy and astrophysics, accretion disk

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!