Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Utah State Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DigitalCommons@USU
Other literature type . 2023
Data sources: DigitalCommons@USU
https://dx.doi.org/10.26076/7f...
Other literature type . 2023
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Interval-Valued Random Forests

Authors: Gaona Partida, Paul;

An Interval-Valued Random Forests

Abstract

There is a growing demand for the development of new statistical models and the refinement of established methods to accommodate different data structures. This need arises from the recognition that traditional statistics often assume the value of each observation to be precise, which may not hold true in many real-world scenarios. Factors such as the collection process and technological advancements can introduce imprecision and uncertainty into the data. For example, consider data collected over a long period of time, where newer measurement tools may offer greater accuracy and provide more information than previous methods. In such cases, it becomes crucial to restructure the data to account for imprecision and incorporate uncertainty into the analysis. Furthermore, the increasing availability of large datasets has introduced computational challenges in analyzing and processing the data. Representing the data in terms of intervals can help address this uncertainty by reducing the data size or accommodating imprecision. Traditional methods have already embraced this concept, but given the rising popularity of machine learning, it is essential to develop models for interval-valued data within the machine learning framework. Tree-based methods, in particular, are well-suited for handling interval-valued data due to their robustness to outliers and their nonparametric nature. Therefore, we propose a new model that takes into account the natural structure of the interval-valued data.. These tree-based methods offer improvements over existing models for interval-valued data, providing a framework capable of effectively handling data with uncertainty arising from imprecision or the need for size management.

Related Organizations
Keywords

Machine Learning, Statistics and Probability, Interval-valued, Stock market, Symbolic Data Analysis, Nonparametric, Random forests, 310, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green