
We present a space and time efficient practical parallel algorithm for approximating the diameter of massive weighted undirected graphs on distributed platforms supporting a MapReduce-like abstraction. The core of the algorithm is a weighted graph decomposition strategy generating disjoint clusters of bounded weighted radius. Theoretically, our algorithm uses linear space and yields a polylogarithmic approximation guarantee; moreover, for important practical classes of graphs, it runs in a number of rounds asymptotically smaller than those required by the natural approximation provided by the state-of-the-art $��$-stepping SSSP algorithm, which is its only practical linear-space competitor in the aforementioned computational scenario. We complement our theoretical findings with an extensive experimental analysis on large benchmark graphs, which demonstrates that our algorithm attains substantial improvements on a number of key performance indicators with respect to the aforementioned competitor, while featuring a similar approximation ratio (a small constant less than 1.4, as opposed to the polylogarithmic theoretical bound).
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Graph Analytics; Parallel Graph Algorithms; Weighted Graph Decomposition; Weighted Diameter Approximation; MapReduce
FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC), Graph Analytics; Parallel Graph Algorithms; Weighted Graph Decomposition; Weighted Diameter Approximation; MapReduce
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
