
Deep neural networks (DNNs) are state-of-the-art techniques for solving most computer vision problems. DNNs require billions of parameters and operations to achieve state-of-the-art results. This requirement makes DNNs extremely compute, memory, and energy-hungry, and consequently difficult to deploy on small battery-powered Internet-of-Things (IoT) devices with limited computing resources. Deployment of DNNs on Internet-of-Things devices, such as traffic cameras, can improve public safety by enabling applications such as automatic accident detection and emergency response.Through this paper, we survey the recent advances in low-power and energy-efficient DNN implementations that improve the deployability of DNNs without significantly sacrificing accuracy. In general, these techniques either reduce the memory requirements, the number of arithmetic operations, or both. The techniques can be divided into three major categories: neural network compression, network architecture search and design, and compiler and graph optimizations. In this paper, we survey both low-power techniques for both convolutional and transformer DNNs, and summarize the advantages, disadvantages, and open research problems.
Accepted and presented at THE IEEE INTERNATIONAL CONFERENCE ON INDUSTRY 4.0, ARTIFICIAL INTELLIGENCE, AND COMMUNICATIONS TECHNOLOGY
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
