Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Електротехніка і Еле...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A METHOD OF REDUCING THE ERROR IN DETERMINING THE ANGULAR DISPLACEMENTS WHEN USING INDUCTIVE SENSORS

Authors: Snitkov, K. I.; Shabatura, Y. V.;

A METHOD OF REDUCING THE ERROR IN DETERMINING THE ANGULAR DISPLACEMENTS WHEN USING INDUCTIVE SENSORS

Abstract

Goal. Representation of a special mathematical software for determining the angular displacements of the rotor of the induction angle sensor – resolver (rotating transformer) for applications in which the speed of the sensor's rotor is close to zero. As well as performing its experimental verification. Methodology. The presented method is based on the determination of the phase shift angle of the output signals of the induction sensor, which is determined by comparing the obtained arrangements of signal values with a circular discrete convolution in order to achieve the most precise approximation of the obtained signal values to cosine and sine. The conversion of orthogonal components to an angle is based on the use of a digital phase detector which is use of a software comparator and inverse trigonometric functions. Results. Based on the obtained results of mathematical modeling and experimental research, the characteristic dependencies of the angle of rotation of the rotor of the induction sensor relative to its stator, the nature of which is linear, were obtained. In addition, the estimation of measurement errors of angular displacements is carried out that occur when defining such angles by the method offered. The obtained results of the computer simulation taking into account the high signal noise, as well as the results of experimental investigations, confirm the high precision of this method and the fact that it can be used in systems where high positioning accuracy is required and the speed of the sensor shaft is close to zero. Originality. This article introduces, for the first time, special mathematical software for a new method of determining the angular displacements of the rotor of an induction sensor, which is based on the determination of the orthogonal components of the signal in combination with the use of a circular discrete convolution in the determination of the phase shift angle of the induction sensor signals. Practical meaning. The proposed method does not require the use of demodulators, counters and quadrant tables associated with conventional methods for determining the phase shift of signals. The presented method can be used to measure the full range of 0-2p angular displacements in real time, is simple and can be easily implemented using digital electronic circuitry.

Keywords

angular displacements; mathematical method; induction sensor; rotating transformer; circular discrete convolution; orthogonal components; precision; phase shift, 681.586 : 681.3, mathematical method, TK1-9971, phase shift, angular displacements, circular discrete convolution, precision, кутові переміщення; математичний метод; індукційний давач; обертовий трансформатор; кругова дискретна згортка; ортогональні складові; прецизійність; зсув фази, Electrical engineering. Electronics. Nuclear engineering, rotating transformer, induction sensor, orthogonal components

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 3
  • 4
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
4
3
gold