
Swarm intelligence algorithm and its variants are constantly evolving over the years, the SOMA algorithm is also not out of that trend. In this paper, we propose a novel strategy of SOMA, called SOMA T3A. The proposed algorithm is divided into three main processes, namely Organization, Migration, and Update. Migrants are selected from the initial population and migrate towards the selected Leader according to the organization process. The Step and PRT parameters are no longer fixed like in the original version; instead, they are adapted through each migration loop. The performance of the algorithm is proven on the 58 well-known benchmark problems from the CEC2013 as well as CEC2017 benchmark suites. The results are compared with the SOMA family and compared with the state-of-the-art algorithms to show its promising performance.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
