Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2000
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

3-Coloring in Time O(1.3289^n)

3-coloring in time \(O(1.3289^n)\)
Authors: Beigel, Richard; Eppstein, David;

3-Coloring in Time O(1.3289^n)

Abstract

We consider worst case time bounds for NP-complete problems including 3-SAT, 3-coloring, 3-edge-coloring, and 3-list-coloring. Our algorithms are based on a constraint satisfaction (CSP) formulation of these problems. 3-SAT is equivalent to (2,3)-CSP while the other problems above are special cases of (3,2)-CSP; there is also a natural duality transformation from (a,b)-CSP to (b,a)-CSP. We give a fast algorithm for (3,2)-CSP and use it to improve the time bounds for solving the other problems listed above. Our techniques involve a mixture of Davis-Putnam-style backtracking with more sophisticated matching and network flow based ideas.

31 pages, 22 figures. An earlier version of this paper was presented at the 36th IEEE Symp. Foundations of Comp. Sci., 1995, and appears as ECCC TR 95-033

Related Organizations
Keywords

\(H\)-distance, FOS: Computer and information sciences, Analysis of algorithms and problem complexity, Girsanov theorem, Heat measures, Loop groups, Coloring of graphs and hypergraphs, Graph theory (including graph drawing) in computer science, Graph algorithms (graph-theoretic aspects), Computer Science - Data Structures and Algorithms, Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.), Data Structures and Algorithms (cs.DS), Wasserstein distance, F.2.2, Nonnumerical algorithms, Constraint Satisfaction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green