Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Non-coding RNA Resea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Non-coding RNA Research
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Non-coding RNA Research
Article . 2025
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The mechanism of plasma exosome miR-15a-5p targeting the CF-modified protein IGF1R to regulate alveolar epithelial autophagy and influence pulmonary interstitial fibrosis

Authors: Yina Li; Nan Wang; Jinying Hu; Minlan Luo; Na Zhang; Lili Gao;

The mechanism of plasma exosome miR-15a-5p targeting the CF-modified protein IGF1R to regulate alveolar epithelial autophagy and influence pulmonary interstitial fibrosis

Abstract

AIMS: This study investigates how plasma exosomal miRNAs regulate core fucosylation (CF)-modified targets to influence autophagy and fibrosis in idiopathic pulmonary fibrosis (IPF), aiming to identify novel therapeutic strategies targeting dysregulated alveolar epithelial cell (AEC) autophagy. MATERIALS AND METHODS: Plasma exosomes from IPF patients and healthy controls were isolated via ultracentrifugation, validated by TEM, nanoparticle tracking analysis (NTA), and Western blot (CD9/CD81). Exosomal miRNA profiling employed high-throughput sequencing, with TargetScan/miRanda predicting target genes. A549 and MLE-12 cells assessed exosome uptake (PKH67 labeling) and miRNA-mRNA interactions (dual-luciferase assays). CF modification was analyzed via immunoprecipitation/Western blot. In vivo validation used bleomycin (BLM)-induced fibrosis models in alveolar epithelial-specific FUT8-knockout (CKO) mice. KEY FINDINGS: IPF plasma exosomes suppressed autophagy and exacerbated fibrosis in AECs. miR-15a-5p was markedly downregulated in IPF exosomes. Overexpression of miR-15a-5p reversed BLM-induced autophagy inhibition and fibrosis. Mechanistically, miR-15a-5p directly targeted IGF1R, a CF-modified protein. Reduced miR-15a-5p elevated IGF1R expression, activating PI3K/AKT to inhibit autophagy and promote fibrosis. SIGNIFICANCE: This study identifies miR-15a-5p as a critical regulator of CF-modified IGF1R in IPF pathogenesis. Its downregulation drives PI3K/AKT-mediated autophagy suppression, accelerating fibrosis. Restoring miR-15a-5p or targeting IGF1R/PI3K/AKT signaling may offer novel therapeutic avenues for IPF.

Keywords

Autophagy, Genetics, Original Research Article, QH426-470, Exosomes, Core fucosylation, Pulmonary interstitial fibrosis, miRNA

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold