
This paper presents a novel hybrid algorithm based on CMOGWO-ADNSGA-II to solve the vibration stability problem during the operation of a EMS-type maglev train dynamics model subjected to strong non-linear magnetic buoyancy. The proposed algorithm optimizes the control system parameters of EMS-type maglev train suspensions by combining an improved multi-objective chaotic grey wolf algorithm (CMOGWO) with an improved non-dominated Sorting genetic algorithm-II (ADNSGA-II) to enhance the search capability of the algorithm and ensure population diversity. The efficacy of the algorithm is demonstrated by applying it to the EMS-type maglev train suspension frame control system to find the optimal control parameters. Experimental results show that the system with the optimal parameters applied significantly reduces the suspension gap amplitude and the corresponding standard deviation, as well as the vertical acceleration amplitude and the corresponding standard deviation during operation. The proposed algorithm provides a good solution for EMS-type maglev train suspension vibration control, which can improve its performance and safety.
Control engineering systems. Automatic machinery (General), TJ212-225, Acoustics. Sound, QC221-246
Control engineering systems. Automatic machinery (General), TJ212-225, Acoustics. Sound, QC221-246
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
