Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Low Frequ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Low Frequency Noise, Vibration and Active Control
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parameter optimization of electromagnetic suspension-type maglev train control system based on multi-objective grey wolf non-dominated sorting hybrid algorithm-Ⅱ hybrid algorithm

Authors: Meiqi Wang; Siheng Zeng; Pengfei Liu; Yixin He; Enli Chen;

Parameter optimization of electromagnetic suspension-type maglev train control system based on multi-objective grey wolf non-dominated sorting hybrid algorithm-Ⅱ hybrid algorithm

Abstract

This paper presents a novel hybrid algorithm based on CMOGWO-ADNSGA-II to solve the vibration stability problem during the operation of a EMS-type maglev train dynamics model subjected to strong non-linear magnetic buoyancy. The proposed algorithm optimizes the control system parameters of EMS-type maglev train suspensions by combining an improved multi-objective chaotic grey wolf algorithm (CMOGWO) with an improved non-dominated Sorting genetic algorithm-II (ADNSGA-II) to enhance the search capability of the algorithm and ensure population diversity. The efficacy of the algorithm is demonstrated by applying it to the EMS-type maglev train suspension frame control system to find the optimal control parameters. Experimental results show that the system with the optimal parameters applied significantly reduces the suspension gap amplitude and the corresponding standard deviation, as well as the vertical acceleration amplitude and the corresponding standard deviation during operation. The proposed algorithm provides a good solution for EMS-type maglev train suspension vibration control, which can improve its performance and safety.

Related Organizations
Keywords

Control engineering systems. Automatic machinery (General), TJ212-225, Acoustics. Sound, QC221-246

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Published in a Diamond OA journal