Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Informationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Information
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Information
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhancing Customer Segmentation Through Factor Analysis of Mixed Data (FAMD)-Based Approach Using K-Means and Hierarchical Clustering Algorithms

Authors: Chukwutem Pinic Ufeli; Mian Usman Sattar; Raza Hasan; Salman Mahmood;

Enhancing Customer Segmentation Through Factor Analysis of Mixed Data (FAMD)-Based Approach Using K-Means and Hierarchical Clustering Algorithms

Abstract

In today’s data-driven business landscape, effective customer segmentation is crucial for enhancing engagement, loyalty, and profitability. Traditional clustering methods often struggle with datasets containing both numerical and categorical variables, leading to suboptimal segmentation. This study addresses this limitation by introducing a novel application of Factor Analysis of Mixed Data (FAMD) for dimensionality reduction, integrated with K-means and Agglomerative Clustering for robust customer segmentation. While FAMD is not new in data analytics, its potential in customer segmentation has been underexplored. This research bridges that gap by demonstrating how FAMD can harmonize mixed data types, preserving structural relationships that conventional methods overlook. The proposed methodology was tested on a Kaggle-sourced retail dataset comprising 3900 customers, with preprocessing steps including correlation ratio filtering (η ≥ 0.03), standardization, and encoding. FAMD reduced the feature space to three principal components, capturing 81.46% of the variance, which facilitated clearer segmentation. Comparative clustering analysis showed that Agglomerative Clustering (Silhouette Score: 0.52) outperformed K-means (0.51) at k = 4, revealing distinct customer segments such as seasonal shoppers and high spenders. Practical implications include the development of targeted marketing strategies, validated through heatmap visualizations and cluster profiling. This study not only underscores the suitability of FAMD for customer segmentation but also sets the stage for more nuanced marketing analytics driven by mixed-data methodologies.

Country
United Kingdom
Related Organizations
Keywords

customer segmentation, silhouette score, FAMD, mixed data analysis, Information technology, T58.5-58.64, K-means, agglomerative clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold