Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scalable Fine-Grained Parallel Cycle Enumeration Algorithms

Authors: Blanuša, Jovan; Ienne, Paolo; Atasu, Kubilay;

Scalable Fine-Grained Parallel Cycle Enumeration Algorithms

Abstract

Enumerating simple cycles has important applications in computational biology, network science, and financial crime analysis. In this work, we focus on parallelising the state-of-the-art simple cycle enumeration algorithms by Johnson and Read-Tarjan along with their applications to temporal graphs. To our knowledge, we are the first ones to parallelise these two algorithms in a fine-grained manner. We are also the first to demonstrate experimentally a linear performance scaling. Such a scaling is made possible by our decomposition of long sequential searches into fine-grained tasks, which are then dynamically scheduled across CPU cores, enabling an optimal load balancing. Furthermore, we show that coarse-grained parallel versions of the Johnson and the Read-Tarjan algorithms that exploit edge- or vertex-level parallelism are not scalable. On a cluster of four multi-core CPUs with $256$ physical cores, our fine-grained parallel algorithms are, on average, an order of magnitude faster than their coarse-grained parallel counterparts. The performance gap between the fine-grained and the coarse-grained parallel algorithms widens as we use more CPU cores. When using all 256 CPU cores, our parallel algorithms enumerate temporal cycles, on average, $260\times$ faster than the serial algorithm of Kumar and Calders.

To be published in Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA '22). The source codes of all the algorithms evaluated in our experiments are available here https://github.com/IBM/parallel-cycle-enumeration

Keywords

FOS: Computer and information sciences, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green