
AbstractParameter estimation is analyzed using two kinds of common sampling-type DFRFT (discrete fractional Fourier transform) algorithm. A model of parameter estimation is established. The factors which influence estimation accuracy are analyzed. And the simulation is made to verify the conclusions. From the theoretic analysis and simulation verification, it can be drawn that, for the estimation of chirp-rate and initial frequency, Pei's method [10] is more suitable if the absolute value of chirp-rate is small relatively; Ozaktas' method [9] is more suitable if the absolute value of chirp-rate is large relatively; and the two methods are both workable if the absolute value of chirp-rate is moderate. The scope of moderate chirp-rate can be approximately determined as [40 Hz/s, 110 Hz/s].
Military Science, U, Parameter estimation, Sampling-type DFRFT, Chirp signal
Military Science, U, Parameter estimation, Sampling-type DFRFT, Chirp signal
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
